Neurotransmisores

Neurotransmisores

Neurotransmisores | scitecnutrition.cl

Un neurotransmisor es una sustancia química que transmite información de una neurona a otra atravesando la sinapsis que es el espacio que separa dos neuronas consecutivas. Es una biomolécula, sintetizada generalmente por las neuronas, que se vierte, a partir de vesículas existentes en la neurona presináptica, hacia la brecha sináptica y produce un cambio en el potencial de acción de la neurona post sináptica.

La neurotransmisión comprende una serie de procesos bioquímicos:

• Síntesis del neurotransmisor por las neuronas pre sinápticas. Según su naturaleza éste se puede sintetizar en el cuerpo neuronal o en sus terminaciones nerviosas.
• Almacenamiento del neurotransmisor en vesículas sinápticas.
• Liberación del neurotransmisor por exocitosis, proceso que es calcio dependiente. Cuando llega un impulso nervioso a la neurona pre sináptica, ésta abre los canales de calcio, entrando el ion en la neurona y liberándose el neurotransmisor en el espacio sináptico.
• Activación del receptor del neurotransmisor situado en la membrana plasmática de la neurona post sináptica. El receptor post sináptico es una estructura proteica que desencadena una respuesta.
• Inactivación del neurotransmisor, ya sea por degradación química o por reabsorción en las membranas. En el espacio sináptico, existen enzimas específicas que inactivan al neurotransmisor. Además, las neuronas pre sinápticas tienen receptores para el neurotransmisor que lo recapturan introduciéndolo y almacenándolo de nuevo en vesículas para su posterior vaciado.

Existen también los neuromoduladores que son sustancias que actúan de forma similar a los neurotransmisores, pero la diferencia radica en que no están limitados al espacio sináptico sino que se difunden por el fluido extra neuronal e intervienen directamente en los efectos post sinápticas de la neurotransmisión.

Clasificación.

Teniendo en cuenta su composición química se pueden clasificar en:

• Colinérgicos: Acetilcolina.
• Adrenérgicos: que se dividen a su vez en Catecolaminas (Adrenalina o Epinefrina, Noradrenalina o Norepinefrina y Dopamina) eIndolaminas (Serotonina, Melatonina e Histamina).
• Aminocidérgicos: GABA, Taurina, Ergotioneina, Glicina, Beta Alanina,Glutamato y Aspartato
• Peptidérgicos: Endorfina, Encefalina, Vasopresina, Oxitocina, Orexina, Neuropéptido Y, Sustancia P, Dinorfina A, Somatostatina, Colecistocinina, Neurotensina, Hormona Luteinizante, Gastrina y Enteroglucagón.
• Radicales libres: Oxido Nítrico (NO), Monóxido de Carbono (CO), Adenosín Trifosfato (ATP) y Acido Araquidónico.

Autor: Dr. Renato Orellana Chamudis


Otros artículos que te pueden interesar

Bioelementos 1

Bioelementos 1

Bioelementos 1¿Qué son los Biolementos 1?Son elementos químicos que están presentes en los seres vivos. Por lo tanto alrededor del 96% de la masa del cuerpo humano está formada por cuatro elementos químicos, denominados bioelementos primarios:Oxígeno (65%)Carbono (18,5%)Hidrógeno (9,5%)Nitrógeno (3%)Por lo tanto, ellos son la base de las principales moléculas orgánicas como hidratos de carbono, lípidos, proteínas y ácidos nucleicos, que participan en la configuración estructural, en la generación de energía, en el crecimiento y en la reproducción de todas nuestras células.Así que, el resto de la masa corporal está formado por una veintena de elementos químicos (minerales) agrupados en macro minerales y oligoelementos.El hidrógeno y el oxígeno forman el agua (H2O) que es el principal componente de nuestro cuerpo y su porcentaje en relación a la masa corporal oscila desde 75% al nacer hasta cerca de 65% en la edad adulta.Por consiguiente, la mayor parte del agua se encuentra dentro de las células (compartimento intracelular).El resto (compartimento extracelular) comprende los líquidos: intersticial (entre las células);intravascular (plasma sanguíneo) transcelular (interior del tubo digestivo, orina en las vías urinarias, vapor de agua en el árbol respiratorio, líquidos pleural, pericardíaco, peritoneal, cefalorraquídeo y sinovial; líquido intraocular y lágrimas).Los macro minerales son bioelementos que están presentes en cantidades superiores a 0,01% del peso corporal total.Son los siguientes:Calcio (1,92%).El 99% del calcio se encuentra en el esqueleto y dientes, el 1% se distribuye en el líquido intracelular y extracelular.En el medio intracelular es un factor insustituible para la excitabilidad y contracción de la musculatura cardíaca y estriada. Además actúa como segundo mensajero que interviene en la liberación de secreciones: neurotransmisores, exocrinas (amilasa) y endocrinas (insulina, aldosterona).En el líquido extracelular (fracción iónica) participa como cofactor en la coagulación, actúa en la mineralización ósea, estabiliza las membranas plasmáticas regulando su permeabilidad a los iones Na+.Fosforo (1,00%).Es un componente esencial de los ácidos nucleicos: ADN (que almacena y transmite la información genética) y ARN (que dirige la síntesis de proteínas); integra los fosfolípidos, que forman parte de las membranas celulares; junto con el calcio forma la hidroxiapatita que constituye la base inorgánica de los huesos, así como de la dentina de los dientes; las células lo utilizan para almacenar y transportar la energía mediante el ATP (adenosín trifosfato)Es uno de los mecanismos principales que regulan la actividad de las proteínas intracelulares mediante adición y eliminación de grupos fosfato en estas moléculas ( fosforilación y desfosforilación, respectivamente).Azufre (0,25%).Se encuentra en dos aminoácidos: metionina y cisteína, que son constituyentes de numerosas proteínas de importancia biológica. Participa en la conformación de puentes disulfuro, que son enlaces de tipo covalente que le permiten a estas macro moléculas establecer plegamientos y configuraciones tridimensionales especificas.La metionina es un aminoácido esencial (debe ser aportado por la dieta) el cual es indispensable para la biosíntesis de cisteína, carnitina, taurina, lecitina, fosfatidilcolina y otros fosfolípidos.El azufre también forma parte de:a) dos importantes vitaminas del complejo B: tiamina (vitamina B1) y biotina (vitamina B8);b) glucosaminoglicanos (queratán sulfato, condroitín sulfato, heparán sulfato) que constituyen la substancia fundamental de los tejidos conjuntivos;c) la queratina, proteína de estructura fibrosa, que es el componente principal que forman las capas más externas de la epidermis y de los anexos de la piel: pelos y uñas, que tiene un porcentaje de azufre que oscila entre el 2% y el 18% de acuerdo con la dureza del tejido (el pelo seco tiene un 5% de azufre);d) del glutatión, tripéptido compuesto por glutamato, cisteína y glicina, sintetizado en nuestro organismo y que tiene efectos antioxidantes que neutralizan los radicales libres, con lo cual se previene el daño celular y se refuerza la función inmunológica;e) de proteínas que participan en la cadena respiratoria del transporte de electrones de las mitocondrias, asociado al fierro.Por otra parte, los siguientes elementos son fundamentales para la vida porque participan en el mantenimiento del equilibrio ácido-base a la vez que regulan la cantidad total de agua y su distribución en el organismo.El sodio y el potasio son metales alcalinos muy reactivos, especialmente con el agua. Ayudan a la célula a conseguir la energía necesaria para el transporte de diversas moléculas a su interior (glucosa y aminoácidos) a través de la bomba sodio-potasio y son necesarios para la generación y transmisión del impulso nervioso a los músculos y para la contracción muscular.Potasio (0,35%)Es el catión más abundante en el medio intracelular.Participa en la contracción del músculo cardíaco y regulación del ritmo cardíaco, y promueve el desarrollo celular a través de la síntesis de proteínas.Sodio (0,15%)El sodio es el catión más abundante en el medio extracelular, regula la presión arterial y su exceso provoca aumento de la presión arterial (hipertensión arterial).Cloro (0,15%)En estado puro, es un gas venenoso. Sin embargo, en la naturaleza suele encontrarse en compuestos químicos como cloruro de sodio y cloratos, ya que reacciona con facilidad con otros elementos. Estas sales son, al contrario que el cloro gaseoso, indispensables para la vida.Es el anión más abundante, es necesario para mantener el balance de agua en la sangre y en el líquido intersticial, ayuda al hígado a eliminar toxinas y participa en la activación y regulación de la función muscular, además de ser uno de los componentes del jugo gástrico.Magnesio (0,05%).Es un mineral intracelular junto con el potasio.Cerca del 60 % está en los huesos, el 26% en los músculos y el resto en los tejidos blandos y líquidos corporales. Se concentra especialmente en el corazón, hígado, cerebro y riñones.Está involucrado en la activación de por lo menos 300 diferentes enzimas y otros agentes químicos corporales. Activa vitaminas del complejo B y juega un papel importante en la síntesis de proteínas, en la excitabilidad de los músculos y en la liberación de energía.Se encuentra principalmente en las mitocondrias, que son los centros de energía de las células. Regula la absorción del calcio y la acción de la hormona paratiroidea; contribuye a la integridad de huesos y dientes; y cumple una función esencial en la secreción y la acción de la insulina.Autor: Dr. Renato Orellana Chamudis....

Este invierno, manten tu peso con los alimentos adecuados

Este invierno, manten tu peso con los alimentos adecuados

Este invierno, manten tu peso con los alimentos adecuadosDurante la época de frío, las legumbres son una buena apuesta a la hora de una alimentación sana, rica en proteínas, baja en grasas y que abriga en días invernales como estos. Si estás tratando de perder peso durante esta época invernal, es bueno que sepas algunos tips.Suele suceder que durante esta época del año sea más difícil perder peso debido a la ingesta de alimentos calóricos para capear el frío, la poca variedad de frutas y verduras; y el aumento en el precio de éstas.Por eso es importante conocer algunos detalles básicos de los alimentos, como los carbohidratos, por ejemplo.Éstos son una parte fundamental de la dieta de las personas, siendo su principal función entregar energía de modo rápido al cuerpo.Existe una mala costumbre a la hora de hacer dietas, ya que éstas tienden a suprimirlos por completo. Sin embargo, son muy necesarios si la persona está siguiendo un programa de entrenamiento físico. Por eso debemos diferenciar entre carbohidratos “malos”, que corresponden a azúcares de disolución simples, como chocolates y golosinas. Y los carbohidratos «buenos», que son de lenta absorción y entregan vitaminas, energía y minerales, entre otros nutrientes.Entre estos se encuentran las hortalizas junto con avena, pan, arroz y fideos, todos integrales. Lo que sucede en el organismo es que los carbohidratos se descomponen dentro de él, transformándose en glucosa que ingresa al torrente sanguíneo. Luego ésta es procesada por el páncreas a través de la insulina y finalmente, su exceso será depositado en forma de grasa en el cuerpo.Luego tenemos las proteínas, que son componentes químicos presentes en los alimentos que ayudan a crecer y regenerar tejidos. Se encuentran en las legumbres, la leche, los huevos, el queso y las carnes. Son fundamentales para un buen plan de ejercicios.Durante la época invernal solemos comer este tipo de alimentos porque son una buena opción para pasar el frío y estar bien alimentado. Sin embargo, este consumo debe ser restringido y en lo posible variando entre porotos, garbanzos y lentejas, ya que además nos entregan vitaminas y minerales.Indice Glicémico.El plan de ejercicios y dieta para hombres y mujeres varía en cada caso. La grasa en las mujeres se localiza generalmente en el vientre, nalgas y muslos, mientras que en los hombres se concentra generalmente en la zona abdominal.Por eso es primordial a la hora de hacer dieta, manejar el concepto de Índice Glicémico (IG), el cual fue originalmente creado para medir el nivel de azúcar en la sangre de los diabéticos. El propósito de este índice es mantener la glicemia baja, además de un nivel de azúcar estable en el cuerpo, el que se puede lograr con una alimentación adecuada y un plan de ejercicios para cada persona, destinando el consumo de proteínas para el desarrollo de músculos, además de frutas y verduras que aportan vitaminas y minerales.El IG es mayor si no hay fibra en un alimento y éste se digiere fácilmente, pues llega rápidamente al torrente sanguíneo, también es superior si hay azúcar o si la cocción destruye parte de la fibra y favorece la digestión del alimento. La única manera de reducir el IG es a través de la fibra en proteínas y grasas, así como si los alimentos se encuentran crudos, con piel o poco cocidos.Por ejemplo, la pasta al dente tendrá menos IG que la pasta demasiado cocida.Ejemplos de alimentos con Índice Glicémico bajo son: legumbres, frutas, verduras, lácteos y cereales integrales.Maravillas del té.Ha sido comprobado el uso de diversos tipos de té para perder peso. Beber té verde, negro y blanco ayuda a suprimir el hambre y tiene propiedades antioxidantes beneficiosas para el cuerpo. Éstos pueden ser encontrados en el supermercado y en tiendas naturales.Te recomendamos realizar una lista de los alimentos que vas a comprar en el supermercado, preocupando escoger alimentos ricos en proteínas y carbohidratos de largo alcance.Además hay que evitar el pasillo de la comida chatarra y las bebidas gaseosas, que sólo aportan aire y azúcar al cuerpo. Este efecto visual de no ver chatarra, evita comprarla y evita consumirla.Prefiere escoger productos naturales que no tengan azúcar procesada.Es fundamental a la hora de comprar alimentos en el supermercado fijarse en la etiqueta de información nutricional para saber que estamos comiendo, ya que muchas veces los productos Light tienen más componentes químicos perjudiciales para el cuerpo que el producto original.LO MÁS IMPORTANTE ES LLEVAR UNA ALIMENTACIÓN BALANCEADA CON TODOS LOS NUTRIENTES, ACOMPAÑADA DE UN BUEN PLAN DE EJERCICIOS....

Acidos grasos

Acidos grasos

Acidos grasosLos lípidos son un conjunto de compuestos químicos orgánicos que son insolubles en agua pero solubles en solventes orgánicos (bencina, benceno, cloroformo). Están integrados principalmente por carbono e hidrógeno y en menor medida por oxígeno pudiendo contener también fósforo, azufre y nitrógeno. Comprenden los siguientes grupos: monoglicéridos, diglicéridos, triglicéridos, fosfátidos, cerebrósidos, esteroles, terpenos, alcoholes grasos y ácidos grasos. Los lípidos dietéticos suministran energía, transportan vitaminas solubles en grasa (A, D, E, K), y son una fuente de antioxidantes y compuestos bioactivos. También son componentes estructurales del cerebro y de las membranas celulares (bicapa lipídica).Los ácidos grasos (AG) son moléculas formadas por una larga cadena hidrocarbonada lineal y en cuyo extremo hay un grupo carboxilo (COOH). Suelen tener un número par de carbonos y los más abundantes tienen 16 y 18 carbonos. Cada átomo de carbono se une al siguiente y al precedente por medio de un enlace covalente sencillo o doble. Tienen el esquema de un tren en el cual la locomotora es el grupo COOH, los carros (CH2) unidos por enlaces simples CH2-CH2 o por enlaces dobles CH=CH, y el último carro es CH3.En general, se puede formular un AG genérico como COOH – R, en donde R es la cadena hidrocarbonada que identifica al ácido en particular. En cuanto a propiedades físicas los AG son moléculas bipolares: la cabeza (COOH) es polar o iónica y la cadena R es apolar o hidrófoba.Son AG saturados los que tienen todos sus carbonos unidos por enlaces simples, se caracterizan por ser flexibles y sólidos a temperatura ambiente. En cambio, son AG insaturados los que tienen un par o más de un par de átomos de carbono unidos por enlaces dobles (AG mono o poli insaturados, respectivamente), se caracterizan por ser rígidos a nivel del doble enlace y líquidos aceitosos a temperatura ambiente. Los enlaces dobles se llaman conjugados cuando están aislados por un enlace simple, ejemplo (-CH=CH-CH=CH-) y no conjugados cuando están aislados por un carbono con sus dos átomos de hidrógeno (-CH=CH-CH2-CH=CH-).Cuando existe un doble enlace entre dos carbonos, los átomos de hidrógeno pueden alinearse en el mismo lado o en el lado opuesto uno del otro. Se usan los prefijos latinos Cis y Trans (respectivamente) para referirse a estas disposiciones de los átomos de hidrógeno. Los AG naturales generalmente tienen la configuración Cis. La forma molecular del ácido oleico, un constituyente del aceite de oliva, tiene forma de «V» por la configuración Cis en el carbono 9.Los átomos de carbono de los AG se numeran de dos maneras: a) Números arábigos: empezando por el carbono carboxílico (-COOH), que recibe el número 1; luego el carbono 2, después el carbono 3 y así sucesivamente; b) Alfabeto griego: el carbono carboxílico no recibe letra. Se empieza a nombrar desde el carbono 2, al cual se le asigna la letra α; al carbono 3 se le otorga la letra β y así sucesivamente. Independientemente del número de carbonos del AG, al último carbono se le asigna la letra ω (omega, la última letra del alfabeto griego).Los AG son frecuentemente representados por una notación como C18:2 ω-6 que indica que el AG posee una cadena de 18 carbonos, tiene dos enlaces dobles y el último doble enlace se ubica a 6 carbones del carbono terminal omega. En este caso se trata de un AG poliinsaturado omega 6 llamado ácido linoleico. Como una manera de ejercitarnos en nomenclatura anotamos los siguientes AG:C18:0       ácido esteárico, saturadoC18:1 ω-9 ácido oleico, mono insaturado, omega 9C18:2 ω-6 ácido linoleico, poli insaturado, omega 6C18:3 ω-3 ácido alfa linolénico, poli insaturado, omega 3Cuando un AG se une a un alcohol se forma un grupo funcional éster y se libera una molécula de agua. En los mamíferos, incluido el ser humano, la mayoría de los AG se encuentra en forma de triglicéridos que son ésteres del glicerol. Este alcohol, llamado también glicerina o propanotriol tiene tres grupos hidroxilos (-OH) cada uno de los cuales se puede combinar con los grupos ácidos (-COOH) de hasta tres AG para formar monoglicéridos, diglicéridos, y triglicéridos. Los triglicéridos son los constituyentes principales de los aceites vegetales y las grasas animales. Tienen densidades más bajas que el agua (flotan sobre el agua), y pueden ser sólidos o líquidos a la temperatura normal del ambiente. Cuando son sólidos se llaman «grasas«, y cuando son líquidos se llaman «aceites«.Habitualmente las grasas insaturadas se oxidan al exponerse al aire y crean compuestos que tienen olores o sabores rancios y desagradables. Para retardar o eliminar la posibilidad de rancidez se recurre a la hidrogenación que es un proceso químico que añade más hidrógeno a las grasas insaturadas naturales para disminuir el número de enlaces dobles. Las temperaturas altas y los catalizadores necesarios para esta reacción química debilitan los enlaces dobles y, como efecto secundario, causan que un gran porcentaje de los enlaces dobles naturales Cis se conviertan en enlaces dobles Trans. Un ejemplo de ello es la solidificación del aceite vegetal, líquido, para la fabricación de margarina.Lamentablemente los AG Trans comprometen nuestra salud: ellos no sólo aumentan la concentración plasmática de lipoproteínas de baja densidad (LDL) llamado «colesterol malo» sino que disminuyen las lipoproteínas de alta densidad (HDL) llamado «colesterol bueno», dando lugar a un mayor riesgo de sufrir enfermedades cardiovasculares. Los AG Trans también se incorporan en las membranas celulares creando estructuras muy densas que alteran las funciones bioquímicas normales de las células.Los AG Trans existen en forma natural en pequeñas cantidades en la leche y la grasa corporal de los rumiantes. Elaborados en forma industrial se encuentran en la margarina, en productos de pastelería, y en alimentos procesados y fritos de comida rápida.Autor: Dr. Renato Orellana Chamudis....

Dopamina

Dopamina

DopaminaLa dopamina es un neurotransmisor producido en una variedad de animales, tanto vertebrados como invertebrados. También es una neurohormona liberada por el hipotálamo.Según su estructura química, es una feniletilamina, una catecolamina. Como fármaco, actúa como simpaticomimético (reproduciendo la acción del sistema nervioso simpático) promoviendo el incremento de la frecuencia cardiaca y la presión arterial.La dopamina fue sintetizada artificialmente por primera vez en 1910 por George Barger y James Ewens (Inglaterra). Fue llamada así porque es una mono amina, y su precursor sintético es la L-dopa. Como miembro de la familia de las catecolaminas, la dopamina a su vez es un precursor de la norepinefrina (noradrenalina) y de la epinefrina (adrenalina). Es biosintetizada en el organismo principalmente por el tejido nervioso y en la médula de las glándulas suprarrenales, primero por la hidroxilación del aminoácido L-tirosina a L-dopa y luego por la decarboxilación de L-dopa a dopamina.Después de su síntesis en las neuronas, la dopamina es introducida en vesículas localizadas en la región distal del axón, y luego es liberada en la sinapsis en respuesta a la acción potencial pre sináptica. Las neuronas dopaminérgicas (que son las neuronas cuyo neurotransmisor primario es la dopamina) están presentes mayoritariamente en el área ventral del cerebro medio, en la parte compacta de la sustancia negra, y en el hipotálamo.La dopamina tiene muchas funciones en el cerebro, incluyendo papeles importantes en el comportamiento y la cognición, la actividad motora, la motivación y la recompensa, la regulación de la producción de leche, el sueño, el humor, la atención, y el aprendizaje.Se le asocia con el sistema del placer del cerebro, suministrando los sentimientos de gozo y refuerzo para motivar a una persona a realizar ciertas actividades. Participa en experiencias naturalmente gratificantes tales como la alimentación, el sexo, algunas drogas, y los estímulos neutrales que se pueden asociar con éstos.En los lóbulos frontales, la dopamina controla el flujo de información desde otras áreas del cerebro. Los desórdenes de dopamina en esta región del cerebro pueden causar un decaimiento en las funciones neurocognitivas, especialmente memoria, atención, y resolución de problemas. Se piensa que las concentraciones reducidas de dopamina en la corteza pre frontal contribuyen al trastorno de déficit atencional con hiperactividad.Con relación a la experiencia del placer, se ha argumentado que la dopamina está más asociada al deseo anticipatorio y la motivación (comúnmente denominados «querer») por oposición al placer consumatorio* real (normalmente denominado «gustar»).La sociabilidad se encuentra también muy ligada a la neurotransmisión de dopamina. Una baja captabilidad de dopamina es frecuentemente encontrada en personas con ansiedad social.Como neurohormona, la dopamina inhibe en el hipotálamo la liberación de prolactina del lóbulo anterior de la hipófisis.Nota: * Conducta consumatoria es la conducta propiamente innata del comportamiento instintivo, a diferencia de la conducta instrumental. No es modificable por la experiencia.Dr. Renato Orellana Chamudis...