Acidos grasos

Acidos grasos

Acidos grasos | scitecnutrition.cl

Los lípidos son un conjunto de compuestos químicos orgánicos que son insolubles en agua pero solubles en solventes orgánicos (bencina, benceno, cloroformo). Están integrados principalmente por carbono e hidrógeno y en menor medida por oxígeno pudiendo contener también fósforo, azufre y nitrógeno. Comprenden los siguientes grupos: monoglicéridos, diglicéridos, triglicéridos, fosfátidos, cerebrósidos, esteroles, terpenos, alcoholes grasos y ácidos grasos. Los lípidos dietéticos suministran energía, transportan vitaminas solubles en grasa (A, D, E, K), y son una fuente de antioxidantes y compuestos bioactivos. También son componentes estructurales del cerebro y de las membranas celulares (bicapa lipídica).

Los ácidos grasos (AG) son moléculas formadas por una larga cadena hidrocarbonada lineal y en cuyo extremo hay un grupo carboxilo (COOH). Suelen tener un número par de carbonos y los más abundantes tienen 16 y 18 carbonos. Cada átomo de carbono se une al siguiente y al precedente por medio de un enlace covalente sencillo o doble. Tienen el esquema de un tren en el cual la locomotora es el grupo COOH, los carros (CH2) unidos por enlaces simples CH2-CH2 o por enlaces dobles CH=CH, y el último carro es CH3.

En general, se puede formular un AG genérico como COOH – R, en donde R es la cadena hidrocarbonada que identifica al ácido en particular. En cuanto a propiedades físicas los AG son moléculas bipolares: la cabeza (COOH) es polar o iónica y la cadena R es apolar o hidrófoba.

Son AG saturados los que tienen todos sus carbonos unidos por enlaces simples, se caracterizan por ser flexibles y sólidos a temperatura ambiente. En cambio, son AG insaturados los que tienen un par o más de un par de átomos de carbono unidos por enlaces dobles (AG mono o poli insaturados, respectivamente), se caracterizan por ser rígidos a nivel del doble enlace y líquidos aceitosos a temperatura ambiente. Los enlaces dobles se llaman conjugados cuando están aislados por un enlace simple, ejemplo (-CH=CH-CH=CH-) y no conjugados cuando están aislados por un carbono con sus dos átomos de hidrógeno (-CH=CH-CH2-CH=CH-).

Cuando existe un doble enlace entre dos carbonos, los átomos de hidrógeno pueden alinearse en el mismo lado o en el lado opuesto uno del otro. Se usan los prefijos latinos Cis y Trans (respectivamente) para referirse a estas disposiciones de los átomos de hidrógeno. Los AG naturales generalmente tienen la configuración Cis. La forma molecular del ácido oleico, un constituyente del aceite de oliva, tiene forma de «V» por la configuración Cis en el carbono 9.

Los átomos de carbono de los AG se numeran de dos maneras: a) Números arábigos: empezando por el carbono carboxílico (-COOH), que recibe el número 1; luego el carbono 2, después el carbono 3 y así sucesivamente; b) Alfabeto griego: el carbono carboxílico no recibe letra. Se empieza a nombrar desde el carbono 2, al cual se le asigna la letra α; al carbono 3 se le otorga la letra β y así sucesivamente. Independientemente del número de carbonos del AG, al último carbono se le asigna la letra ω (omega, la última letra del alfabeto griego).

Los AG son frecuentemente representados por una notación como C18:2 ω-6 que indica que el AG posee una cadena de 18 carbonos, tiene dos enlaces dobles y el último doble enlace se ubica a 6 carbones del carbono terminal omega. En este caso se trata de un AG poliinsaturado omega 6 llamado ácido linoleico. Como una manera de ejercitarnos en nomenclatura anotamos los siguientes AG:

C18:0       ácido esteárico, saturado
C18:1 ω-9 ácido oleico, mono insaturado, omega 9
C18:2 ω-6 ácido linoleico, poli insaturado, omega 6
C18:3 ω-3 ácido alfa linolénico, poli insaturado, omega 3

Cuando un AG se une a un alcohol se forma un grupo funcional éster y se libera una molécula de agua. En los mamíferos, incluido el ser humano, la mayoría de los AG se encuentra en forma de triglicéridos que son ésteres del glicerol. Este alcohol, llamado también glicerina o propanotriol tiene tres grupos hidroxilos (-OH) cada uno de los cuales se puede combinar con los grupos ácidos (-COOH) de hasta tres AG para formar monoglicéridos, diglicéridos, y triglicéridos. Los triglicéridos son los constituyentes principales de los aceites vegetales y las grasas animales. Tienen densidades más bajas que el agua (flotan sobre el agua), y pueden ser sólidos o líquidos a la temperatura normal del ambiente. Cuando son sólidos se llaman «grasas«, y cuando son líquidos se llaman «aceites«.

Habitualmente las grasas insaturadas se oxidan al exponerse al aire y crean compuestos que tienen olores o sabores rancios y desagradables. Para retardar o eliminar la posibilidad de rancidez se recurre a la hidrogenación que es un proceso químico que añade más hidrógeno a las grasas insaturadas naturales para disminuir el número de enlaces dobles. Las temperaturas altas y los catalizadores necesarios para esta reacción química debilitan los enlaces dobles y, como efecto secundario, causan que un gran porcentaje de los enlaces dobles naturales Cis se conviertan en enlaces dobles Trans. Un ejemplo de ello es la solidificación del aceite vegetal, líquido, para la fabricación de margarina.

Lamentablemente los AG Trans comprometen nuestra salud: ellos no sólo aumentan la concentración plasmática de lipoproteínas de baja densidad (LDL) llamado «colesterol malo» sino que disminuyen las lipoproteínas de alta densidad (HDL) llamado «colesterol bueno», dando lugar a un mayor riesgo de sufrir enfermedades cardiovasculares. Los AG Trans también se incorporan en las membranas celulares creando estructuras muy densas que alteran las funciones bioquímicas normales de las células.

Los AG Trans existen en forma natural en pequeñas cantidades en la leche y la grasa corporal de los rumiantes. Elaborados en forma industrial se encuentran en la margarina, en productos de pastelería, y en alimentos procesados y fritos de comida rápida.

Autor: Dr. Renato Orellana Chamudis.


Otros artículos que te pueden interesar

Beneficios de omega 3 y omega 6

Beneficios de omega 3 y omega 6

¿Quieres saber todos los Beneficios de omega 3 y omega 6?Probablemente ya hayas escuchado hablar de los ácidos grasos de Omega 3 y del Omega 6, en este articulo detallamos todo lo que quieres saber sobre ellos.Los ácidos grasos son fundamentales para nuestro organismo, principalmente para que nuestros sistemas funcionen en perfecta condiciones. Existen dos ácidos grasos, que nuestro cuerpo no produce por si sólo.El primero es el ácido linolénico Omega-3 es un ácido graso esencial, importante para el funcionamiento cerebral.El segundo es el ácido linolénico Omega-6, ambos no pueden ser sintetizados por nuestro organismo, debiendo obtenerse por medio de suplementos.Los mamíferos, incluido el ser humano, sólo pueden introducir enlaces a partir del carbono ω-9 y por eso los AG de las series ω-3 y ω-6 son esenciales.Los beneficios son:Omega 3: Es fundamental para la reducción de la inflamación y disminución del riesgo de enfermedades crónicas, sobre todo las cardiovasculares o coronarias. También resultan importantes en la mejoría de las funciones cognitivas y conductuales. Son indispensables para el correcto desarrollo fetal y la respuesta inmune en niños.Omega 6, interviene en varias funciones vitales como: acción inmuno estimulante, disminución del nivel de grasa corporal por lipólisis, colaboración en el control del colesterol y los triglicéridos, con lo que se reduce el riesgo de enfermedades cardiovasculares y de hipertensión, ademas ayuda al funcionamiento de los sistemas nervioso y de la visión.Las principales fuentes alimenticias de estos ácidos grasos son:Omega 3: yema de huevo, peces grasos (jurel, salmón, sardinas y anchoas), aceite de lino, canola y soya.Omega 6: aceites de maravilla, soya, canola, maíz, pepita de uva, oliva, lino, sésamo, maní y palta; yema de huevo e hígado de vaca.Por consiguiente, niveles bajos de Omega 3 pueden causar trastornos por déficit de atención, trastorno bipolar, esquizofrenia y depresión.SCITEC NUTRITION “TU CUERPO, TU MENTE, TU VIDAEncuentra estos productos aquí...

Grasas saturadas

Grasas saturadas

¿Qué son las grasas saturadas?En primer lugar, hay que comprender que son loss ácidos grasos. Estos están compuestas por lípidos, que son un conjunto de compuestos químicos orgánicos  insolubles en agua pero solubles en solventes orgánicos (bencina, benceno, cloroformo). Están integrados principalmente por carbono e hidrógeno y en menor medida por oxígeno pudiendo contener también fósforo, azufre y nitrógeno.Los ácidos grasos (AG) son moléculas formadas por una larga cadena hidrocarbonada lineal y en cuyo extremo hay un grupo carboxilo (COOH). Suelen tener un número par de carbonos y los más abundantes tienen 16 y 18 carbonos. Cada átomo de carbono se une al siguiente y al precedente por medio de un enlace covalente sencillo o doble.Son Acidos grasos saturados los que tienen todos sus carbonos unidos por enlaces simples, se caracterizan por ser flexibles y sólidos a temperatura ambiente. En cambio, son Acidos grasos insaturados los que tienen un par o más de un par de átomos de carbono unidos por enlaces dobles, se caracterizan por ser rígidos a nivel del doble enlace y líquidos aceitosos a temperatura ambiente.En los mamíferos, incluido el ser humano, la mayoría de los AG se encuentra en forma de triglicéridos que son ésteres del glicerol. Los triglicéridos son los constituyentes principales de los aceites vegetales y las grasas animales. Tienen densidades más bajas que el agua (flotan sobre el agua), y pueden ser sólidos o líquidos a la temperatura normal del ambiente. Cuando son sólidos se llaman «grasas«, y cuando son líquidos se llaman «aceites«.Habitualmente las grasas insaturadas se oxidan al exponerse al aire y crean compuestos que tienen olores o sabores rancios y desagradables. Para retardar o eliminar la posibilidad de rancidez se recurre a la hidrogenación que es un proceso químico que añade más hidrógeno a las grasas insaturadas naturales para disminuir el número de enlaces dobles.Las temperaturas altas y los catalizadores necesarios para esta reacción química debilitan los enlaces dobles y, como efecto secundario y causa que se conviertan en enlaces dobles Trans. Un ejemplo de ello es la solidificación del aceite vegetal, líquido, para la fabricación de margarina.Por desgracias, acidos grasos trans afectan nuestra salud: aumentan la concentración plasmática de lipoproteínas de baja densidad llamado «colesterol malo» y disminuyen las lipoproteínas de alta densidad llamado «colesterol bueno», dando lugar a un mayor riesgo de sufrir enfermedades cardiovasculares.Ademas, estos acidos grasos trans existen en forma natural en pequeñas cantidades en la leche y la grasa corporal de los rumiantes. Elaborados en forma industrial se encuentran en la margarina, en productos de pastelería, alimentos procesados y fritos de comida rápida.Autor: Dr. Renato Orellana Chamudis....

Antioxidantes y radicales libres

Antioxidantes y radicales libres

Antioxidantes y radicales libresNuestras las células requieren energía para realizar sus funciones. Dicha energía se genera en las mitocondrias a partir de los nutrientes que ingerimos, principalmente glucosa, y se almacena en forma de ATP. Sin embargo, el metabolismo de los alimentos, al igual que la respiración y el ejercicio físico, producen ciertos desechos como dióxido de carbono, residuos nitrogenados, y en menor cantidad, fragmentos de moléculas llamadas especies reactivas del oxigeno (ROS, por sus siglas en inglés) que incluyen radicales libres (RL) y otras sustancias reactivas pro-oxidantes, todos los cuales deben ser excretados y/o neutralizados.Por otra parte, estamos también cada vez más expuestos a elementos del medio ambiente que crean RL como polución industrial, tabaco, radiación, campos electromagnéticos, aditivos químicos en alimentos procesados y pesticidas, entre otros.Un RL es cualesquier especie química, ya sea átomo, molécula o ión, que contenga a lo menos un electrón sin aparear en su orbital más externo y que sea a su vez capaz de existir en forma independiente (o libre). Es inestable y altamente reactivo. Su misión, como oxidante, es la de remover el electrón que les hace falta, de las moléculas que están a su alrededor para obtener su estabilidad. La molécula atacada (que ahora no tiene un electrón) se convierte entonces en otro RL y de esta manera se inicia una reacción en cadena que dañará muchas células y puede ser indefinida si los antioxidantes no intervienen.Los RL de origen endógeno más importantes son el anión superóxido, generado en la mitocondria a nivel de la cadena de transporte de electrones (entre el 1% al 3% del oxígeno que ingresa a la mitocondria es convertido en RL), el óxido nítrico, producido en las células endoteliales de los vasos sanguíneos, el radical hidroxilo y el radical peróxido. La producción controlada de estos RL es fisiológica y fundamental para asegurar nuestra salud. Por ejemplo, las células del sistema inmune crean RL para matar bacterias y virus. A objeto de neutralizar el exceso de RL contamos con mecanismos de defensa constituidos por antioxidantes endógenoselaborados según programas genéticos individuales, mecanismos que lamentablemente disminuyen conforme envejecemos. Cuando la producción de RL supera a la capacidad del sistema de defensa que los anulan hablamos de estrés oxidativo.Los RL ocasionan acciones adversas desastrosas a nivel celular como:a) agresión a los receptores de membrana celular al tomar electrones de los lípidos y proteínas estructurales, alterando sus funciones como intercambio de nutrientes y limpieza de materiales de desecho;b) pérdida de la energía celular por daño de las mitocondrias al afectar la cadena respiratoria con menor producción de energía (ATP) y concomitantemente mayor generación de RL;c) ataque químico al ADN (material genético) que provee la matriz para la replicación celular, impidiendo a la célula su reproducción;d) mutaciones del ADN que pueden conducir al crecimiento anormal de células y al desarrollo tanto de tumores benignos como malignose) contribución al proceso del envejecimiento general por alteración de la producción de colágeno (piel seca y arrugada);f) finalmente, apoptosis o muerte celular.Los RL son neutralizados con los antioxidantes que son sustancias químicas que previenen o retardan la oxidación y en algunos casos logran revertir el daño oxidativo de las moléculas afectadas.Los antioxidantes podemos clasificarlos en endógenos (sintetizados por el organismo), exógenos (suministrados por la alimentación) y elementos químicos:Endógenos: a) enzimáticos: superóxido dismutasa (SOD); catalasa (CAT); glutation peroxidasa; b) no enzimáticos: glutatión, coenzima Q, melatonina, ácido úrico, ácido lipoico, metalotioneína. Exógenos: a) vitaminas antioxidantes: ácido ascórbico (vitamina C); alfa-tocoferol (vitamina E); beta caroteno (vitamina A); b) carotenoides (luteína, zeaxantina, licopeno); c) polifenoles (flavonoides y no flavonoides).Elementos químicos: a) oligoelementos antioxidantes: selenio y zinc; b) cofactores antioxidantes: cobre, magnesio, manganeso y azufre.Si bien los antioxidantes exógenos forman parte de una dieta ideal, pueden resultar numéricamente ineficaces cuando se trata de controlar números exageradamente elevados de RL como es el caso de un estrés oxidativo. Los alimentos que son una buena fuente de antioxidantes son las plantas comestibles, especialmente sus frutos, hojas y semillas.Destacan las frutas (berries, manzana, ciruela, granada y pomelo); verduras frescas; tomates y pimentones; algunos cereales como trigo y cebada; algunos frutos secos como nueces, almendras y pistachos; el cacao; diversas especias culinarias como orégano, canela, clavo de olor y romero; bebidas como té verde, café de grano, vino tinto e infusiones de hierbas.La evidencia científica acumulada demuestra que mientras mayor es el consumo de alimentos ricos en antioxidantes menor es la probabilidad de llegar al estrés oxidativo y consecuentemente desarrollar enfermedades como patologías cardiovasculares (ateroesclerosis, hipertensión arterial); enfermedades inflamatorias crónicas (artritis reumatoide, lupus, colitis ulcerosa, hepatitis); enfermedad periodontal; enfermedades neurodegenerativas (Alzheimer, accidente vascular encefálico), insuficiencia renal crónica, diabetes mellitus y enfermedades tumorales.Diversos tipos de antioxidantes los encontramos también en suplementos y vitaminas, que deben ser administrados cuando la dieta no los aporta en cantidades suficientes o cuando sus requerimientos están aumentados como es el caso de ejercicio físico extenuante o de personas expuestas a un medio ambiente tóxico y contaminado con RL. No obstante, su dosificación debe ser controlada ya que la ingestión desmesurada de antioxidantes resulta muchas veces perjudicial para la salud según lo muestran estudios médicos recientes. La clave está en el equilibrio entre oxidantes (RL) y antioxidantes, debiendo evitarse un exceso de cualquiera de ellos en detrimento del otro.Autor: Dr. Renato Orellana Chamudis....

HMB (Hidroxi-Metil-Butirato)

HMB (Hidroxi-Metil-Butirato)

HMB (Hidroxi-Metil-Butirato)Dentro de la gran variedad de suplementos alimenticios diseñados para ayudar a desarrollar fuerza y volumen muscular libre de grasa está el HMB.El HMB (β-Hidroxi-β-Metil-Butirato) es un metabolito* del aminoácido leucinaque pertenece al grupo de los aminoácidos de cadena ramificada (BCAA) junto con la valina y la isoleucina. La leucina es un elemento esencial en la construcción de la proteína de todos los tejidos y se encuentra en prácticamente todas las proteínas de la dieta. Los aminoácidos de cadena ramificada (BCAA) en conjunto poseen efectos únicos de desempeño y fortaleza para la reparación y crecimiento muscular. Lo que separa a la leucina de los otros dos aminoácidos de cadena ramificada y también del resto de los aminoácidos es su papel en la regulación de la síntesis y degradación de las proteínas.El primer metabolito de la leucina es un compuesto llamado cetoisocaproato, también conocido como KIC (por sus siglas en inglés). Las investigaciones con este compuesto demostraron que podía duplicar todas las funciones de la leucina, incluyendo una disminución del catabolismo de las proteínas y un aumento en las síntesis de proteína que son dos requisitos fundamentales para la recuperación y el crecimiento muscular. Al comienzo de las investigaciones con este compuesto los científicos descubrieron que había otro metabolito intermedio que regulaba estos efectos de la leucina y así fue como en los ochenta se descubrió el HMB. Después de una serie de investigaciones y estudios clínicos, se llegó a la conclusión de que el HMB es el compuesto bioactivo que regula el metabolismo proteico aumentando la síntesis y evitando el catabolismo.COMO FUNCIONA EL HMB Y COMO TE AYUDA A AUMENTAR TU VOLUMEN MUSCULAR.El requisito fundamental para lograr un aumento de la masa muscular es un aumento de la cantidad de proteína contráctil que existe dentro de las fibras musculares. Para que este proceso se lleve a cabo, el anabolismo (síntesis de proteínas) debe ser mayor al catabolismo (degradación de proteínas). Por esta razón cuando los músculos están sometidos a un intenso trabajo en el gimnasio, lo que frecuentemente origina micro rupturas de las fibras musculares y catabolismo de las proteínas, es muy importante que la ingesta de proteína sea la adecuada para mantener un balance positivo de nitrógeno.Al estudiar el mecanismo por el cual el HMB ejercía el efecto promotor del aumento en la síntesis de proteína a nivel muscular, los investigadores propusieron que el HMB regula enzimas responsables del catabolismo muscular. Se planteó también la hipótesis de que el HMB sea un componente esencial de la membrana celular. Los científicos propusieron que bajo situaciones estresantes o de carga para los tejidos, el cuerpo puede no producir las cantidades requeridas de HMB para satisfacer la necesidad incrementada de los tejidos. También pudiera ser que el stress altera la concentración de ciertas enzimas y compuestos causando una disminución en la producción de HMB. Cualquiera de estas dos hipótesis apoya la suplementación con HMB para favorecer el óptimo funcionamiento del tejido muscular.En un estudio realizado en humanos, se demostró que después de tan sólo una semana de suplementación con 3 gramos diarios de HMB se disminuyó el catabolismo proteico a nivel muscular en un 44% comparado con el grupo control. Esta tendencia se mantuvo durante toda la duración del estudio. En otro estudio en el que había 3 grupos, uno había que tomaba 1.5 gramos diarios de HMB, un grupo que tomaba 3 gramos diarios, y un grupo control, se observó un aumento de fuerza en los dos grupos suplementados: 23% en el grupo que tomó 1.5 gr, y 29% en el grupo que tomo 3 gr, comparados con el grupo control.Así que existe evidencia de que el HMB ayuda tanto a disminuir el catabolismo muscular, promover la síntesis de proteínas y aumentar la fuerza muscular. Se han demostrado estos efectos tanto en hombres como en mujeres con una suplementación de 3 gramos diarios de HMB, combinada con un entrenamiento de pesas. Los efectos del HMB en la masa magra también son prometedores, aunque la evidencia científica no es tan amplia como con los aumentos de fuerza y desempeño. Un estudio reciente reportó que el HMB ayuda a aumentar la masa magra en adultos mayores. También otros estudios han demostrados mayores incrementos en fuerza y ganancia muscular magra. Se ha postulado que el HMB acelera la utilización de ácidos grasos para formar ATP, de tal forma que ayuda a reducir el porcentaje de grasa corporal.COMO TOMARLO.Casi todos los estudios han concluido que la dosis ideal para obtener los beneficios del HMB en la reducción del catabolismo muscular y en la promoción de la reparación y crecimiento de la masa magra es 3 gramos al día. Se recomienda dividir la dosis en 2 o 3 tomas, una de ellas ingerirla inmediatamente después del entrenamiento de pesas.Se ha demostrado además, que el efecto del HMB se potencializa si se combina con creatina y glutamina. La dosis recomendada de creatina es de 5 a 10 gramos al día divididos en tres dosis, y de glutamina es de por lo menos 5 gramos diarios. Se recomienda que una de las tomas de creatina y glutamina se haga después de entrenar y una más antes de dormir, ya que estos son los momentos en que el cuerpo necesita la mayor cantidad de nutrimentos que favorezcan la reparación y el crecimiento muscular. La combinación de creatina, glutamina, taurina y HMB constituye un excelente sistema de suplementación para aumentar el volumen muscular.Nota:*metabolitos: productos en los que se va transformando una sustancia química a medida que va siendo metabolizado por el cuerpo.Autor: Dr. Renato Orellana Chamudis...