Vitamina D (primera parte)

Vitamina D (primera parte) | scitecnutrition.cl

La vitamina D

Cumple una función importante en la salud, no sólo en lo relacionado con el metabolismo óseo, sino también en lo referente al sistema cardiovascular, al desarrollo neurológico, a la inmunomodulación, y a la regulación del crecimiento celular.

Esta vitamina es liposoluble y químicamente pertenece al grupo de secoesteroides, que son moléculas similares a los esteroides pero que tienen uno de sus cuatro anillos (el anillo B) abierto o fisionado.

Para producir vitamina D en la naturaleza, se requiere de la concurrencia de rayos solares ultravioletas subtipo B (UVB). Incluso la vitamina D de los alimentos comestibles es derivada en última instancia de otros organismos, desde setas u hongos hasta animales, los cuales no pueden sintetizarla sino a través de la acción de rayos UVB, en algún punto de la cadena sintética.

Por ejemplo; los peces contienen vitamina D sólo porque consumen micro algas del océano (fitoplancton) que sintetizan la vitamina D en aguas superficiales por la acción de rayos UVB.

Hay dos tipos de vitamina D:

  • la vitamina D3 o colecalciferol, de origen animal y la vitamina D2 o ergocalciferol, de origen vegetal. Varios estudios han establecido que la vitamina D3 es más activa que la vitamina D2. En nuestra especie, la vitamina D3 es producida en el interior de células de la piel por la acción de la radiación UVB que actúa sobre moléculas de 7-dehidrocolesterol, rompiendo y abriendo el segundo anillo de estas moléculas y transformándolas en pro vitamina D3, la cual luego se convierte en colecalciferol. Del mismo modo, la acción fotoquímica sobre un esterol de las plantas, el ergosterol, proporciona un precursor para el ergocalciferol o vitamina D2.

La vitamina D es una prohormona y por lo tanto es inactiva. A través de un mecanismo de síntesis muy regulado se convierte en una hormona activa llamada calcitriol. En el hígado, mediante una primera hidroxilación se transforma en calcidiol y luego mediante una segunda hidroxilación que se efectúa en el riñón se convierte finalmente en calcitriol que es el metabolito activo de la vitamina D con acción hormonal.

El calcitriol actúa directamente sobre receptores nucleares llamados VDR (Vitamin D Receptor). Los VDR se han localizado en células del intestino, riñón, hueso, hígado, glándula mamaria, cerebro, timo, médula ósea, páncreas, músculo, paratiroides, tejido adiposo y piel. Hay más de 900 genes (aproximadamente 10% del genoma) que responden a la vitamina D; 80% de esos genes son estimulados por ella; los demás son inhibidos.

La intervención del calcitriol en relación al metabolismo óseo se ejerce estimulando la absorción de calcio y fosfato a nivel intestinal y manteniendo la calcemia, ya sea en forma directa, aumentando la reabsorción renal de calcio o a través de un hiperparatiroidismo secundario. Con esto contribuye a una óptima formación y mineralización ósea, siendo esencial para el desarrollo y mantenimiento del esqueleto y de los dientes.

En la última década se ha logrado determinar que el calcitriol también tiene participación en una serie de acciones extra óseas: a) es un potente modulador del sistema inmunológico b) ayuda a regular la secreción de insulina; c) tiene acción anticancerígena; y d) ayuda a reducir el riesgo de hipertensión arterial.

Autor: Dr. Renato Orellana Chamudis


Otros artículos que te pueden interesar

Acidos grasos

Acidos grasos

Acidos grasosLos lípidos son un conjunto de compuestos químicos orgánicos que son insolubles en agua pero solubles en solventes orgánicos (bencina, benceno, cloroformo). Están integrados principalmente por carbono e hidrógeno y en menor medida por oxígeno pudiendo contener también fósforo, azufre y nitrógeno. Comprenden los siguientes grupos: monoglicéridos, diglicéridos, triglicéridos, fosfátidos, cerebrósidos, esteroles, terpenos, alcoholes grasos y ácidos grasos. Los lípidos dietéticos suministran energía, transportan vitaminas solubles en grasa (A, D, E, K), y son una fuente de antioxidantes y compuestos bioactivos. También son componentes estructurales del cerebro y de las membranas celulares (bicapa lipídica).Los ácidos grasos (AG) son moléculas formadas por una larga cadena hidrocarbonada lineal y en cuyo extremo hay un grupo carboxilo (COOH). Suelen tener un número par de carbonos y los más abundantes tienen 16 y 18 carbonos. Cada átomo de carbono se une al siguiente y al precedente por medio de un enlace covalente sencillo o doble. Tienen el esquema de un tren en el cual la locomotora es el grupo COOH, los carros (CH2) unidos por enlaces simples CH2-CH2 o por enlaces dobles CH=CH, y el último carro es CH3.En general, se puede formular un AG genérico como COOH – R, en donde R es la cadena hidrocarbonada que identifica al ácido en particular. En cuanto a propiedades físicas los AG son moléculas bipolares: la cabeza (COOH) es polar o iónica y la cadena R es apolar o hidrófoba.Son AG saturados los que tienen todos sus carbonos unidos por enlaces simples, se caracterizan por ser flexibles y sólidos a temperatura ambiente. En cambio, son AG insaturados los que tienen un par o más de un par de átomos de carbono unidos por enlaces dobles (AG mono o poli insaturados, respectivamente), se caracterizan por ser rígidos a nivel del doble enlace y líquidos aceitosos a temperatura ambiente. Los enlaces dobles se llaman conjugados cuando están aislados por un enlace simple, ejemplo (-CH=CH-CH=CH-) y no conjugados cuando están aislados por un carbono con sus dos átomos de hidrógeno (-CH=CH-CH2-CH=CH-).Cuando existe un doble enlace entre dos carbonos, los átomos de hidrógeno pueden alinearse en el mismo lado o en el lado opuesto uno del otro. Se usan los prefijos latinos Cis y Trans (respectivamente) para referirse a estas disposiciones de los átomos de hidrógeno. Los AG naturales generalmente tienen la configuración Cis. La forma molecular del ácido oleico, un constituyente del aceite de oliva, tiene forma de «V» por la configuración Cis en el carbono 9.Los átomos de carbono de los AG se numeran de dos maneras: a) Números arábigos: empezando por el carbono carboxílico (-COOH), que recibe el número 1; luego el carbono 2, después el carbono 3 y así sucesivamente; b) Alfabeto griego: el carbono carboxílico no recibe letra. Se empieza a nombrar desde el carbono 2, al cual se le asigna la letra α; al carbono 3 se le otorga la letra β y así sucesivamente. Independientemente del número de carbonos del AG, al último carbono se le asigna la letra ω (omega, la última letra del alfabeto griego).Los AG son frecuentemente representados por una notación como C18:2 ω-6 que indica que el AG posee una cadena de 18 carbonos, tiene dos enlaces dobles y el último doble enlace se ubica a 6 carbones del carbono terminal omega. En este caso se trata de un AG poliinsaturado omega 6 llamado ácido linoleico. Como una manera de ejercitarnos en nomenclatura anotamos los siguientes AG:C18:0       ácido esteárico, saturadoC18:1 ω-9 ácido oleico, mono insaturado, omega 9C18:2 ω-6 ácido linoleico, poli insaturado, omega 6C18:3 ω-3 ácido alfa linolénico, poli insaturado, omega 3Cuando un AG se une a un alcohol se forma un grupo funcional éster y se libera una molécula de agua. En los mamíferos, incluido el ser humano, la mayoría de los AG se encuentra en forma de triglicéridos que son ésteres del glicerol. Este alcohol, llamado también glicerina o propanotriol tiene tres grupos hidroxilos (-OH) cada uno de los cuales se puede combinar con los grupos ácidos (-COOH) de hasta tres AG para formar monoglicéridos, diglicéridos, y triglicéridos. Los triglicéridos son los constituyentes principales de los aceites vegetales y las grasas animales. Tienen densidades más bajas que el agua (flotan sobre el agua), y pueden ser sólidos o líquidos a la temperatura normal del ambiente. Cuando son sólidos se llaman «grasas«, y cuando son líquidos se llaman «aceites«.Habitualmente las grasas insaturadas se oxidan al exponerse al aire y crean compuestos que tienen olores o sabores rancios y desagradables. Para retardar o eliminar la posibilidad de rancidez se recurre a la hidrogenación que es un proceso químico que añade más hidrógeno a las grasas insaturadas naturales para disminuir el número de enlaces dobles. Las temperaturas altas y los catalizadores necesarios para esta reacción química debilitan los enlaces dobles y, como efecto secundario, causan que un gran porcentaje de los enlaces dobles naturales Cis se conviertan en enlaces dobles Trans. Un ejemplo de ello es la solidificación del aceite vegetal, líquido, para la fabricación de margarina.Lamentablemente los AG Trans comprometen nuestra salud: ellos no sólo aumentan la concentración plasmática de lipoproteínas de baja densidad (LDL) llamado «colesterol malo» sino que disminuyen las lipoproteínas de alta densidad (HDL) llamado «colesterol bueno», dando lugar a un mayor riesgo de sufrir enfermedades cardiovasculares. Los AG Trans también se incorporan en las membranas celulares creando estructuras muy densas que alteran las funciones bioquímicas normales de las células.Los AG Trans existen en forma natural en pequeñas cantidades en la leche y la grasa corporal de los rumiantes. Elaborados en forma industrial se encuentran en la margarina, en productos de pastelería, y en alimentos procesados y fritos de comida rápida.Autor: Dr. Renato Orellana Chamudis....

Este invierno, manten tu peso con los alimentos adecuados

Este invierno, manten tu peso con los alimentos adecuados

Este invierno, manten tu peso con los alimentos adecuadosDurante la época de frío, las legumbres son una buena apuesta a la hora de una alimentación sana, rica en proteínas, baja en grasas y que abriga en días invernales como estos. Si estás tratando de perder peso durante esta época invernal, es bueno que sepas algunos tips.Suele suceder que durante esta época del año sea más difícil perder peso debido a la ingesta de alimentos calóricos para capear el frío, la poca variedad de frutas y verduras; y el aumento en el precio de éstas.Por eso es importante conocer algunos detalles básicos de los alimentos, como los carbohidratos, por ejemplo.Éstos son una parte fundamental de la dieta de las personas, siendo su principal función entregar energía de modo rápido al cuerpo.Existe una mala costumbre a la hora de hacer dietas, ya que éstas tienden a suprimirlos por completo. Sin embargo, son muy necesarios si la persona está siguiendo un programa de entrenamiento físico. Por eso debemos diferenciar entre carbohidratos “malos”, que corresponden a azúcares de disolución simples, como chocolates y golosinas. Y los carbohidratos «buenos», que son de lenta absorción y entregan vitaminas, energía y minerales, entre otros nutrientes.Entre estos se encuentran las hortalizas junto con avena, pan, arroz y fideos, todos integrales. Lo que sucede en el organismo es que los carbohidratos se descomponen dentro de él, transformándose en glucosa que ingresa al torrente sanguíneo. Luego ésta es procesada por el páncreas a través de la insulina y finalmente, su exceso será depositado en forma de grasa en el cuerpo.Luego tenemos las proteínas, que son componentes químicos presentes en los alimentos que ayudan a crecer y regenerar tejidos. Se encuentran en las legumbres, la leche, los huevos, el queso y las carnes. Son fundamentales para un buen plan de ejercicios.Durante la época invernal solemos comer este tipo de alimentos porque son una buena opción para pasar el frío y estar bien alimentado. Sin embargo, este consumo debe ser restringido y en lo posible variando entre porotos, garbanzos y lentejas, ya que además nos entregan vitaminas y minerales.Indice Glicémico.El plan de ejercicios y dieta para hombres y mujeres varía en cada caso. La grasa en las mujeres se localiza generalmente en el vientre, nalgas y muslos, mientras que en los hombres se concentra generalmente en la zona abdominal.Por eso es primordial a la hora de hacer dieta, manejar el concepto de Índice Glicémico (IG), el cual fue originalmente creado para medir el nivel de azúcar en la sangre de los diabéticos. El propósito de este índice es mantener la glicemia baja, además de un nivel de azúcar estable en el cuerpo, el que se puede lograr con una alimentación adecuada y un plan de ejercicios para cada persona, destinando el consumo de proteínas para el desarrollo de músculos, además de frutas y verduras que aportan vitaminas y minerales.El IG es mayor si no hay fibra en un alimento y éste se digiere fácilmente, pues llega rápidamente al torrente sanguíneo, también es superior si hay azúcar o si la cocción destruye parte de la fibra y favorece la digestión del alimento. La única manera de reducir el IG es a través de la fibra en proteínas y grasas, así como si los alimentos se encuentran crudos, con piel o poco cocidos.Por ejemplo, la pasta al dente tendrá menos IG que la pasta demasiado cocida.Ejemplos de alimentos con Índice Glicémico bajo son: legumbres, frutas, verduras, lácteos y cereales integrales.Maravillas del té.Ha sido comprobado el uso de diversos tipos de té para perder peso. Beber té verde, negro y blanco ayuda a suprimir el hambre y tiene propiedades antioxidantes beneficiosas para el cuerpo. Éstos pueden ser encontrados en el supermercado y en tiendas naturales.Te recomendamos realizar una lista de los alimentos que vas a comprar en el supermercado, preocupando escoger alimentos ricos en proteínas y carbohidratos de largo alcance.Además hay que evitar el pasillo de la comida chatarra y las bebidas gaseosas, que sólo aportan aire y azúcar al cuerpo. Este efecto visual de no ver chatarra, evita comprarla y evita consumirla.Prefiere escoger productos naturales que no tengan azúcar procesada.Es fundamental a la hora de comprar alimentos en el supermercado fijarse en la etiqueta de información nutricional para saber que estamos comiendo, ya que muchas veces los productos Light tienen más componentes químicos perjudiciales para el cuerpo que el producto original.LO MÁS IMPORTANTE ES LLEVAR UNA ALIMENTACIÓN BALANCEADA CON TODOS LOS NUTRIENTES, ACOMPAÑADA DE UN BUEN PLAN DE EJERCICIOS....

Oligoelementos

Oligoelementos

¿QUE SON LOS OLIGOELEMENTOS?Son micronutrientes minerales que están presentes en cantidades inferiores al 0,01% del peso corporal total. Tienen un nivel normal de concentración en cada compartimento del organismo, definido como la cantidad adecuada del elemento que garantiza el óptimo desempeño de las funciones biológicas.Si la concentración es mayor que la normal, el elemento pasa a tener características tóxicas; por el contrario, si su concentración es menor, se pueden manifestar síntomas carenciales en el ser humano.LOS OLIGOELEMENTOS SON LOS SIGUIENTES:Fierro (0,004%).Se encuentra el 70% en la hemoglobina; el 3% en la mioglobina; el 1% en moléculas de la cadena respiratoria en la mitocondria y el 26% restante como reserva en forma de ferritina y hemosiderina presentes en el hígado, bazo y riñón. Es transportado en la sangre por una glucoproteína específica llamada transferrina.Funciones: Transporte y depósito de oxígeno en los tejidos, el grupo hemo o hem que forma la hemoglobina y mioglobina está compuesto por un átomo de fierro, la primera es una proteína presente en los eritrocitos que transporta oxígeno desde los pulmones hacia los tejidos y la segunda, transporta y almacena oxígeno en los músculos regulando el oxígeno de acuerdo a la demanda muscular;Participa en el metabolismo energético del transporte de electrones en la mitocondria formando parte de proteínas diferentes: citocromos en los que está unido a un grupo hemo y ferrosulfoproteínas, en las cuales se encuentra formando los llamados «centro ferro-sulfurados» o «hierro-azufre»;Tiene acción antioxidante al formar parte de catalasas y peroxidasas que neutralizan la acumulación de peróxido de hidrógeno, radical libre que daña las estructuras celulares;Interviene mejorando la respuesta inmune al integrar enzimas presentes en neutrófilos encargadas de destruir bacterias, microorganismos y materiales extraños.Zinc (0,003%).Forma parte de más 100 enzimas, relacionadas con el crecimiento, la actividad de la vitamina A o la síntesis de enzimas pancreáticas.Las mayores concentraciones están en el hueso, próstata, ojos y  en músculos donde está la mayor proporción (60% del total).Es fundamental para: el funcionamiento del sistema inmune, el crecimiento y desarrollo de los órganos sexuales, mantener el sentido del gusto (apetito) y del olfato, facilitar la cicatrización de las heridas y el desarrollo del feto.Cobre (0,00015%).Participa en la formación de glóbulos rojos asistiendo en la fijación del fierro a la hemoglobina, en la parte terminal de la cadena respiratoria de electrones como cofactor de diversas enzimas, integrando enzimas necesarias para la síntesis de: colágeno y elastina, melanina, lípidos a nivel cerebral, enzimas antioxidantes que neutralizan los radicales libres de superóxido evitando daños celulares irreparable y en la absorción óptima de vitamina C.Manganeso (0,00003%)Activa innumerables enzimas, especialmente las que sintetizan glicoproteínas y glucosaminoglicanos (o mucopolisacáridos) que son indispensables para elasticidad y resistencia del cartílago; integrando enzimas del metabolismo de grasas e hidratos de carbono;Interviene: en la síntesis de hormonas sexuales y tiroxina; en la absorción de las vitaminas B1, C y colina;Además, interviene: en la síntesis de catecolaminas a nivel cerebral y en la  protrombina.Yodo (0,00003%).La mayor parte se encuentra en la glándula tiroidea y es insustituible para la síntesis de hormonas tiroideas: T3 (triyodotironina) y T4 (tetrayodotironina o tiroxina). Estas hormonas regulan la temperatura corporal, la tasa metabólica, la reproducción, el crecimiento, la producción de eritrocitos, la función muscular y cerebral.Selenio (0,00003%)Forma parte de la enzima glutatión peroxidasa que neutraliza radicales libres e hidroperóxidos de ácidos grasos poli insaturados, acción que realiza junto con la vitaminas C y E y otros antioxidantes endógenos.Es un factor de protección contra el estrés oxidativo previniendo enfermedades cardiovasculares y tumorales.también participa en la respuesta inmune mediada por linfocitos.Hay otros minerales necesarios para la vida, su cantidad es tan pequeña que algunos lo denominan elementos traza, sus funciones son:Molibdeno.Es componente esencial de varias enzimas, especialmente hepáticas;interviene en la regulación del metabolismo del azufre, fierro y ácido úrico; enlentece el proceso natural de envejecimiento;colabora con el flúor en la mantención del esmalte dental y del depósito de calcio en los huesos.Níquel.Incrementa la acción de diversas hormonas, especialmente la insulina; activa una serie de hormonas que participan en el metabolismo de los hidratos de carbono;disminuye la acción de la adrenalina; favorece la absorción de fierro;estabiliza los ácidos nucleicos.Cobalto.Es constituyente de la vitamina B12 (llamada cobalamina);activa la combustión de hidratos de carbono;como componente de algunas enzimas participa en la síntesis de proteínas;interviene en la regulación de los sistemas nerviosos simpático y parasimpático;a través de la vitamina B12 participa en la maduración y crecimiento celular, en la optimización de la absorción intestinal de fierro y de yodo por la glándula tiroides.Cromo.Interviene en el metabolismo de hidratos de carbono y lípidospotencia la acción de la insulina.FlúorEndurece el esmalte dental evitando la producción de caries.Nuestro organismo necesita para su metabolismo celular el aporte de vitaminas y minerales.Todos los nutrientes minerales se obtienen sin mayores problemas a partir de una alimentación equilibrada, incluso consumiendo en algunos casos alimentos fortificados, por ejemplo con calcio, yodo, flúor, etc.No obstante en muchas ocasiones es preciso el aporte de suplementos minerales.Autor: Dr. Renato Orellana Chamudis....

HMB (Hidroxi-Metil-Butirato)

HMB (Hidroxi-Metil-Butirato)

HMB (Hidroxi-Metil-Butirato)Dentro de la gran variedad de suplementos alimenticios diseñados para ayudar a desarrollar fuerza y volumen muscular libre de grasa está el HMB.El HMB (β-Hidroxi-β-Metil-Butirato) es un metabolito* del aminoácido leucinaque pertenece al grupo de los aminoácidos de cadena ramificada (BCAA) junto con la valina y la isoleucina. La leucina es un elemento esencial en la construcción de la proteína de todos los tejidos y se encuentra en prácticamente todas las proteínas de la dieta. Los aminoácidos de cadena ramificada (BCAA) en conjunto poseen efectos únicos de desempeño y fortaleza para la reparación y crecimiento muscular. Lo que separa a la leucina de los otros dos aminoácidos de cadena ramificada y también del resto de los aminoácidos es su papel en la regulación de la síntesis y degradación de las proteínas.El primer metabolito de la leucina es un compuesto llamado cetoisocaproato, también conocido como KIC (por sus siglas en inglés). Las investigaciones con este compuesto demostraron que podía duplicar todas las funciones de la leucina, incluyendo una disminución del catabolismo de las proteínas y un aumento en las síntesis de proteína que son dos requisitos fundamentales para la recuperación y el crecimiento muscular. Al comienzo de las investigaciones con este compuesto los científicos descubrieron que había otro metabolito intermedio que regulaba estos efectos de la leucina y así fue como en los ochenta se descubrió el HMB. Después de una serie de investigaciones y estudios clínicos, se llegó a la conclusión de que el HMB es el compuesto bioactivo que regula el metabolismo proteico aumentando la síntesis y evitando el catabolismo.COMO FUNCIONA EL HMB Y COMO TE AYUDA A AUMENTAR TU VOLUMEN MUSCULAR.El requisito fundamental para lograr un aumento de la masa muscular es un aumento de la cantidad de proteína contráctil que existe dentro de las fibras musculares. Para que este proceso se lleve a cabo, el anabolismo (síntesis de proteínas) debe ser mayor al catabolismo (degradación de proteínas). Por esta razón cuando los músculos están sometidos a un intenso trabajo en el gimnasio, lo que frecuentemente origina micro rupturas de las fibras musculares y catabolismo de las proteínas, es muy importante que la ingesta de proteína sea la adecuada para mantener un balance positivo de nitrógeno.Al estudiar el mecanismo por el cual el HMB ejercía el efecto promotor del aumento en la síntesis de proteína a nivel muscular, los investigadores propusieron que el HMB regula enzimas responsables del catabolismo muscular. Se planteó también la hipótesis de que el HMB sea un componente esencial de la membrana celular. Los científicos propusieron que bajo situaciones estresantes o de carga para los tejidos, el cuerpo puede no producir las cantidades requeridas de HMB para satisfacer la necesidad incrementada de los tejidos. También pudiera ser que el stress altera la concentración de ciertas enzimas y compuestos causando una disminución en la producción de HMB. Cualquiera de estas dos hipótesis apoya la suplementación con HMB para favorecer el óptimo funcionamiento del tejido muscular.En un estudio realizado en humanos, se demostró que después de tan sólo una semana de suplementación con 3 gramos diarios de HMB se disminuyó el catabolismo proteico a nivel muscular en un 44% comparado con el grupo control. Esta tendencia se mantuvo durante toda la duración del estudio. En otro estudio en el que había 3 grupos, uno había que tomaba 1.5 gramos diarios de HMB, un grupo que tomaba 3 gramos diarios, y un grupo control, se observó un aumento de fuerza en los dos grupos suplementados: 23% en el grupo que tomó 1.5 gr, y 29% en el grupo que tomo 3 gr, comparados con el grupo control.Así que existe evidencia de que el HMB ayuda tanto a disminuir el catabolismo muscular, promover la síntesis de proteínas y aumentar la fuerza muscular. Se han demostrado estos efectos tanto en hombres como en mujeres con una suplementación de 3 gramos diarios de HMB, combinada con un entrenamiento de pesas. Los efectos del HMB en la masa magra también son prometedores, aunque la evidencia científica no es tan amplia como con los aumentos de fuerza y desempeño. Un estudio reciente reportó que el HMB ayuda a aumentar la masa magra en adultos mayores. También otros estudios han demostrados mayores incrementos en fuerza y ganancia muscular magra. Se ha postulado que el HMB acelera la utilización de ácidos grasos para formar ATP, de tal forma que ayuda a reducir el porcentaje de grasa corporal.COMO TOMARLO.Casi todos los estudios han concluido que la dosis ideal para obtener los beneficios del HMB en la reducción del catabolismo muscular y en la promoción de la reparación y crecimiento de la masa magra es 3 gramos al día. Se recomienda dividir la dosis en 2 o 3 tomas, una de ellas ingerirla inmediatamente después del entrenamiento de pesas.Se ha demostrado además, que el efecto del HMB se potencializa si se combina con creatina y glutamina. La dosis recomendada de creatina es de 5 a 10 gramos al día divididos en tres dosis, y de glutamina es de por lo menos 5 gramos diarios. Se recomienda que una de las tomas de creatina y glutamina se haga después de entrenar y una más antes de dormir, ya que estos son los momentos en que el cuerpo necesita la mayor cantidad de nutrimentos que favorezcan la reparación y el crecimiento muscular. La combinación de creatina, glutamina, taurina y HMB constituye un excelente sistema de suplementación para aumentar el volumen muscular.Nota:*metabolitos: productos en los que se va transformando una sustancia química a medida que va siendo metabolizado por el cuerpo.Autor: Dr. Renato Orellana Chamudis...